We have the following indirect implication of form equivalence classes:

286 \(\Rightarrow\) 77
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
286 \(\Rightarrow\) 40 S´eminaire d’Analyse 1992, Morillon, 1991b,
40 \(\Rightarrow\) 43 Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc.
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
43 \(\Rightarrow\) 77 The Axiom of Choice, Jech, 1973b, page 23

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
286:

Extended Krein-Milman Theorem:  Let K be a quasicompact (sometimes called convex-compact), convex subset of a locally convex topological vector space, then K has an extreme point. H. Rubin/J. Rubin [1985], p. 177-178.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

77:

A linear ordering of a set \(P\) is a well ordering if and only if \(P\) has no infinite descending sequences. Jech [1973b], p 23.

Comment:

Back