We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 126 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
126: | \(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
Comment: