We have the following indirect implication of form equivalence classes:

260 \(\Rightarrow\) 327
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
260 \(\Rightarrow\) 40 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
40 \(\Rightarrow\) 122 clear
122 \(\Rightarrow\) 327 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
260:

\(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

122:

\(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function.

327:

\(KW(WO,<\aleph_0)\),  The Kinna-Wagner Selection Principle for a well ordered family of finite sets: For every well ordered set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\)  then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.)

Comment:

Back