We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
260 \(\Rightarrow\) 40 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
40 \(\Rightarrow\) 122 | clear |
122 \(\Rightarrow\) 48-K | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
260: | \(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element. |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
122: | \(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function. |
48-K: | If \(K\) is a finite subset of \(\omega-\{0,1\}\), \(C(WO,K)\): For every \(n\in K,\) \(C(WO,n)\). |
Comment: