We have the following indirect implication of form equivalence classes:

286 \(\Rightarrow\) 250
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
286 \(\Rightarrow\) 40 S´eminaire d’Analyse 1992, Morillon, 1991b,
40 \(\Rightarrow\) 122 clear
122 \(\Rightarrow\) 250 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
286:

Extended Krein-Milman Theorem:  Let K be a quasicompact (sometimes called convex-compact), convex subset of a locally convex topological vector space, then K has an extreme point. H. Rubin/J. Rubin [1985], p. 177-178.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

122:

\(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function.

250:

\((\forall n\in\omega-\{0,1\})(C(WO,n))\): For every natural number \(n\ge 2\), every well ordered family of \(n\) element sets has a choice function.

Comment:

Back