We have the following indirect implication of form equivalence classes:

347 \(\Rightarrow\) 330
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
347 \(\Rightarrow\) 40 Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic
40 \(\Rightarrow\) 165 clear
165 \(\Rightarrow\) 330 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
347:

Idemmultiple Partition Principle: If \(y\) is idemmultiple (\(2\times y\approx y\)) and \(x\precsim ^* y\), then \(x\precsim y\).

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

165:

\(C(WO,WO)\):  Every well ordered family of non-empty, well orderable sets has a choice function.

330:

\(MC(WO,WO)\): For every well ordered set \(X\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).  (See Form 67.)

Comment:

Back