We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
347 \(\Rightarrow\) 40 |
Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic |
40 \(\Rightarrow\) 231 |
Abzählbarkeit und Wohlordenbarkeit, Felgner, U. 1974, Comment. Math. Helv. |
231 \(\Rightarrow\) 151 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
347: | Idemmultiple Partition Principle: If \(y\) is idemmultiple (\(2\times y\approx y\)) and \(x\precsim ^* y\), then \(x\precsim y\). |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
231: | \(UT(WO,WO,WO)\): The union of a well ordered collection of well orderable sets is well orderable. |
151: | \(UT(WO,\aleph_{0},WO)\) (\(U_{\aleph_{1}}\)): The union of a well ordered set of denumerable sets is well orderable. (If \(\kappa\) is a well ordered cardinal, see note 27 for \(UT(WO,\kappa,WO)\).) |
Comment: