We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
174-alpha \(\Rightarrow\) 43 |
"Representing multi-algebras by algebras, the axiom of choice and the axiom of dependent choice", Howard, P. 1981, Algebra Universalis |
43 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 351 |
Disasters in metric topology without choice, Keremedis, K. 2002, Comment. Math. Univ. Carolinae |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
174-alpha: | \(RM1,\aleph_{\alpha }\): The representation theorem for multi-algebras with \(\aleph_{\alpha }\) unary operations: Assume \((A,F)\) is a multi-algebra with \(\aleph_{\alpha }\) unary operations (and no other operations). Then there is an algebra \((B,G)\) with \(\aleph_{\alpha }\) unary operations and an equivalence relation \(E\) on \(B\) such that \((B/E,G/E)\) and \((A,F)\) are isomorphic multi-algebras. |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
8: | \(C(\aleph_{0},\infty)\): |
351: | A countable product of metrizable spaces is metrizable. |
Comment: