We have the following indirect implication of form equivalence classes:

174-alpha \(\Rightarrow\) 353
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
174-alpha \(\Rightarrow\) 43 "Representing multi-algebras by algebras, the axiom of choice and the axiom of dependent choice", Howard, P. 1981, Algebra Universalis
43 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 353 Disasters in metric topology without choice, Keremedis, K. 2002, Comment. Math. Univ. Carolinae

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
174-alpha:

\(RM1,\aleph_{\alpha }\): The representation theorem for multi-algebras with \(\aleph_{\alpha }\) unary operations:  Assume \((A,F)\) is  a  multi-algebra  with \(\aleph_{\alpha }\) unary operations (and no other operations). Then  there  is  an  algebra \((B,G)\)  with \(\aleph_{\alpha }\) unary operations and an equivalence relation \(E\) on \(B\) such that \((B/E,G/E)\) and \((A,F)\) are isomorphic multi-algebras.

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

8:

\(C(\aleph_{0},\infty)\):

353:

A countable product of first countable spaces is first countable.

Comment:

Back