We have the following indirect implication of form equivalence classes:

345 \(\Rightarrow\) 209
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
345 \(\Rightarrow\) 43 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal
43 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 24 clear
24 \(\Rightarrow\) 26 Zermelo's Axiom of Choice, Moore, 1982, 66
Le¸cons sur la th´eorie des fonctions, Borel, [1898]
26 \(\Rightarrow\) 209 note-72

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
345:

Rasiowa-Sikorski Axiom:  If \((B,\land,\lor)\) is a Boolean algebra, \(a\) is a non-zero element of \(B\), and \(\{X_n: n\in\omega\}\) is a denumerable set of subsets of \(B\) then there is a maximal filter \(F\) of \(B\) such that \(a\in F\) and for each \(n\in\omega\), if \(X_n\subseteq F\) and \(\bigwedge X_n\) exists then \(\bigwedge X_n \in F\).

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

8:

\(C(\aleph_{0},\infty)\):

24:

\(C(\aleph_0,2^{(2^{\aleph_0})})\): Every denumerable collection of non-empty sets each with power \(2^{(2^{\aleph_{0}})}\) has a choice function.

26:

\(UT(\aleph_{0},2^{\aleph_{0}},2^{\aleph_{0}})\): The union of denumerably many sets each of power \(2^{\aleph _{0}}\) has power \(2^{\aleph_{0}}\).

209:

There is an ordinal \(\alpha\) such that for all \(X\), if \(X\) is a denumerable union of denumerable sets then \({\cal P}(X)\) cannot be partitioned into \(\aleph_{\alpha}\) non-empty sets.

Comment:

Back