We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
345 \(\Rightarrow\) 43 |
Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal |
43 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 24 | clear |
24 \(\Rightarrow\) 26 | Zermelo's Axiom of Choice, Moore, 1982, 66 Le¸cons sur la th´eorie des fonctions, Borel, [1898] |
26 \(\Rightarrow\) 209 | note-72 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
345: | Rasiowa-Sikorski Axiom: If \((B,\land,\lor)\) is a Boolean algebra, \(a\) is a non-zero element of \(B\), and \(\{X_n: n\in\omega\}\) is a denumerable set of subsets of \(B\) then there is a maximal filter \(F\) of \(B\) such that \(a\in F\) and for each \(n\in\omega\), if \(X_n\subseteq F\) and \(\bigwedge X_n\) exists then \(\bigwedge X_n \in F\). |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
8: | \(C(\aleph_{0},\infty)\): |
24: | \(C(\aleph_0,2^{(2^{\aleph_0})})\): Every denumerable collection of non-empty sets each with power \(2^{(2^{\aleph_{0}})}\) has a choice function. |
26: | \(UT(\aleph_{0},2^{\aleph_{0}},2^{\aleph_{0}})\): The union of denumerably many sets each of power \(2^{\aleph _{0}}\) has power \(2^{\aleph_{0}}\). |
209: | There is an ordinal \(\alpha\) such that for all \(X\), if \(X\) is a denumerable union of denumerable sets then \({\cal P}(X)\) cannot be partitioned into \(\aleph_{\alpha}\) non-empty sets. |
Comment: