We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
86-alpha \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 380 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
86-alpha: | \(C(\aleph_{\alpha},\infty)\): If \(X\) is a set of non-empty sets such that \(|X| = \aleph_{\alpha }\), then \(X\) has a choice function. |
8: | \(C(\aleph_{0},\infty)\): |
380: | \(PC(\infty,WO,\infty)\): For every infinite family of non-empty well orderable sets, there is an infinite subfamily \(Y\) of \(X\) which has a choice function. |
Comment: