We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
407 \(\Rightarrow\) 43 | clear |
43 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 94 | clear |
94 \(\Rightarrow\) 74 | note-10 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
407: | Let \(B\) be a Boolean algebra, \(b\) a non-zero element of \(B\) and \(\{A_i: i\in\omega\}\) a sequence of subsets of \(B\) such that for each \(i\in\omega\), \(A_i\) has a supremum \(a_i\). Then there exists an ultrafilter \(D\) in \(B\) such that \(b\in D\) and, for each \(i\in\omega\), if \(a_i\in D\), then \(D\cap\ A_i\neq\emptyset\). |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
8: | \(C(\aleph_{0},\infty)\): |
94: | \(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals has a choice function. Jech [1973b], p 148 prob 10.1. |
74: | For every \(A\subseteq\Bbb R\) the following are equivalent:
|
Comment: