We have the following indirect implication of form equivalence classes:

87-alpha \(\Rightarrow\) 342-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
87-alpha \(\Rightarrow\) 43 clear
43 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 342-n clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
87-alpha:

\(DC(\aleph_{\alpha})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y|<\aleph_{\alpha}\), there is an \(x\in X\) with \(Y\mathrel R x\) then there is a function \(f:\aleph_{\alpha}\to X\) such that (\(\forall\beta < \aleph_{\alpha}\)) \(\{f(\gamma): \gamma < \beta\}\mathrel R f(\beta)\).

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

8:

\(C(\aleph_{0},\infty)\):

342-n:

(For \(n\in\omega\), \(n\ge 2\).) \(PC(\infty,n,\infty)\):  Every infinite family of \(n\)-element sets has an infinite subfamily with a choice function. (See Form 166.)

Comment:

Back