We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
86-alpha \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 27 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
86-alpha: | \(C(\aleph_{\alpha},\infty)\): If \(X\) is a set of non-empty sets such that \(|X| = \aleph_{\alpha }\), then \(X\) has a choice function. |
8: | \(C(\aleph_{0},\infty)\): |
27: | \((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36. |
Comment: