We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
87-alpha \(\Rightarrow\) 43 | clear |
43 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 24 | clear |
24 \(\Rightarrow\) 26 | Zermelo's Axiom of Choice, Moore, 1982, 66 Le¸cons sur la th´eorie des fonctions, Borel, [1898] |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
87-alpha: | \(DC(\aleph_{\alpha})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y|<\aleph_{\alpha}\), there is an \(x\in X\) with \(Y\mathrel R x\) then there is a function \(f:\aleph_{\alpha}\to X\) such that (\(\forall\beta < \aleph_{\alpha}\)) \(\{f(\gamma): \gamma < \beta\}\mathrel R f(\beta)\). |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
8: | \(C(\aleph_{0},\infty)\): |
24: | \(C(\aleph_0,2^{(2^{\aleph_0})})\): Every denumerable collection of non-empty sets each with power \(2^{(2^{\aleph_{0}})}\) has a choice function. |
26: | \(UT(\aleph_{0},2^{\aleph_{0}},2^{\aleph_{0}})\): The union of denumerably many sets each of power \(2^{\aleph _{0}}\) has power \(2^{\aleph_{0}}\). |
Comment: