We have the following indirect implication of form equivalence classes:

87-alpha \(\Rightarrow\) 19
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
87-alpha \(\Rightarrow\) 43 clear
43 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 27 clear
27 \(\Rightarrow\) 31 clear
31 \(\Rightarrow\) 34 clear
34 \(\Rightarrow\) 19 Sur les fonctions representables analytiquement, Lebesgue, H. 1905, J. Math. Pures Appl.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
87-alpha:

\(DC(\aleph_{\alpha})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y|<\aleph_{\alpha}\), there is an \(x\in X\) with \(Y\mathrel R x\) then there is a function \(f:\aleph_{\alpha}\to X\) such that (\(\forall\beta < \aleph_{\alpha}\)) \(\{f(\gamma): \gamma < \beta\}\mathrel R f(\beta)\).

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

8:

\(C(\aleph_{0},\infty)\):

27:

\((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The  union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36.

31:

\(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem:  The union of a denumerable set of denumerable sets is denumerable.

34:

\(\aleph_{1}\) is regular.

19:

A real function is analytically representable if and only if it is in Baire's classification. G.Moore [1982], equation (2.3.1).

Comment:

Back