We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
192 \(\Rightarrow\) 43 |
Injectivity, projectivity and the axiom of choice, Blass, A. 1979, Trans. Amer. Math. Soc. |
43 \(\Rightarrow\) 375 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
192: | \(EP\) sets: For every set \(A\) there is a projective set \(X\) and a function from \(X\) onto \(A\). |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
375: | Tietze-Urysohn Extension Theorem: If \((X,T)\) is a normal topological space, \(A\) is closed in \(X\), and \(f: A\to [0,1]\) is continuous, then there exists a continuous function \(g: X\to [0,1]\) which extends \(f\). |
Comment: