We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
174-alpha \(\Rightarrow\) 43 |
"Representing multi-algebras by algebras, the axiom of choice and the axiom of dependent choice", Howard, P. 1981, Algebra Universalis |
43 \(\Rightarrow\) 106 |
Injectivity, projectivity and the axiom of choice, Blass, A. 1979, Trans. Amer. Math. Soc. On the role of the Baire category theorem and dependent choice in the foundations of logic, Goldblatt, R. 1985, J. Symbolic Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
174-alpha: | \(RM1,\aleph_{\alpha }\): The representation theorem for multi-algebras with \(\aleph_{\alpha }\) unary operations: Assume \((A,F)\) is a multi-algebra with \(\aleph_{\alpha }\) unary operations (and no other operations). Then there is an algebra \((B,G)\) with \(\aleph_{\alpha }\) unary operations and an equivalence relation \(E\) on \(B\) such that \((B/E,G/E)\) and \((A,F)\) are isomorphic multi-algebras. |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
106: | Baire Category Theorem for Compact Hausdorff Spaces: Every compact Hausdorff space is Baire. |
Comment: