We have the following indirect implication of form equivalence classes:

407 \(\Rightarrow\) 106
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
407 \(\Rightarrow\) 43 clear
43 \(\Rightarrow\) 106 Injectivity, projectivity and the axiom of choice, Blass, A. 1979, Trans. Amer. Math. Soc.
On the role of the Baire category theorem and dependent choice in the foundations of logic, Goldblatt, R. 1985, J. Symbolic Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
407:

Let \(B\) be a Boolean algebra, \(b\) a non-zero element of \(B\) and \(\{A_i: i\in\omega\}\) a sequence of subsets of \(B\) such that for each \(i\in\omega\), \(A_i\) has a supremum \(a_i\). Then there exists an ultrafilter \(D\) in \(B\) such that \(b\in D\) and, for each \(i\in\omega\), if \(a_i\in D\), then \(D\cap\ A_i\neq\emptyset\).

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

106:

Baire Category Theorem for Compact Hausdorff Spaces: Every compact Hausdorff space is Baire.

Comment:

Back