We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
87-alpha \(\Rightarrow\) 43 | clear |
43 \(\Rightarrow\) 106 |
Injectivity, projectivity and the axiom of choice, Blass, A. 1979, Trans. Amer. Math. Soc. On the role of the Baire category theorem and dependent choice in the foundations of logic, Goldblatt, R. 1985, J. Symbolic Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
87-alpha: | \(DC(\aleph_{\alpha})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y|<\aleph_{\alpha}\), there is an \(x\in X\) with \(Y\mathrel R x\) then there is a function \(f:\aleph_{\alpha}\to X\) such that (\(\forall\beta < \aleph_{\alpha}\)) \(\{f(\gamma): \gamma < \beta\}\mathrel R f(\beta)\). |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
106: | Baire Category Theorem for Compact Hausdorff Spaces: Every compact Hausdorff space is Baire. |
Comment: