We have the following indirect implication of form equivalence classes:

44 \(\Rightarrow\) 155
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
44 \(\Rightarrow\) 43 The interdependence of certain consequences of the axiom of choice, Levy, A. 1964, Fund. Math.
The Axiom of Choice, Jech, 1973b, page 120 theorem 8.1
43 \(\Rightarrow\) 78 The Axiom of Choice, Jech, [1973b]
The Axiom of Choice, Jech, [1973b]
78 \(\Rightarrow\) 155 Geordnete Lauchli Kontinuen, Brunner, N. 1983a, Fund. Math.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
44:

\(DC(\aleph _{1})\):  Given a relation \(R\) such that for every  subset \(Y\) of a set \(X\) with \(|Y| < \aleph_{1}\) there is an \(x \in  X\)  with \(Y \mathrel R x\), then there is a function \(f: \aleph_{1} \rightarrow  X\) such that \((\forall\beta < \aleph_{1}) (\{f(\gamma ): \gamma < b \} \mathrel R f(\beta))\).

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

78:

Urysohn's Lemma:  If \(A\) and \(B\) are disjoint closed sets in a normal space \(S\), then there is a continuous \(f:S\rightarrow [0,1]\) which is 1 everywhere in \(A\) and 0 everywhere in \(B\). Urysohn [1925], pp 290-292.

155:  \(LC\): There are no non-trivial Läuchli continua. (A Läuchli continuum is a strongly connected continuum. Continuum \(\equiv\) compact, connected, Hausdorff space; and strongly connected \(\equiv\) every continuous real valued function is constant.)

Comment:

Back