We have the following indirect implication of form equivalence classes:

345 \(\Rightarrow\) 155
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
345 \(\Rightarrow\) 43 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal
43 \(\Rightarrow\) 78 The Axiom of Choice, Jech, [1973b]
The Axiom of Choice, Jech, [1973b]
78 \(\Rightarrow\) 155 Geordnete Lauchli Kontinuen, Brunner, N. 1983a, Fund. Math.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
345:

Rasiowa-Sikorski Axiom:  If \((B,\land,\lor)\) is a Boolean algebra, \(a\) is a non-zero element of \(B\), and \(\{X_n: n\in\omega\}\) is a denumerable set of subsets of \(B\) then there is a maximal filter \(F\) of \(B\) such that \(a\in F\) and for each \(n\in\omega\), if \(X_n\subseteq F\) and \(\bigwedge X_n\) exists then \(\bigwedge X_n \in F\).

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

78:

Urysohn's Lemma:  If \(A\) and \(B\) are disjoint closed sets in a normal space \(S\), then there is a continuous \(f:S\rightarrow [0,1]\) which is 1 everywhere in \(A\) and 0 everywhere in \(B\). Urysohn [1925], pp 290-292.

155:  \(LC\): There are no non-trivial Läuchli continua. (A Läuchli continuum is a strongly connected continuum. Continuum \(\equiv\) compact, connected, Hausdorff space; and strongly connected \(\equiv\) every continuous real valued function is constant.)

Comment:

Back