We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
87-alpha \(\Rightarrow\) 43 | clear |
43 \(\Rightarrow\) 78 | The Axiom of Choice, Jech, [1973b] The Axiom of Choice, Jech, [1973b] |
78 \(\Rightarrow\) 155 |
Geordnete Lauchli Kontinuen, Brunner, N. 1983a, Fund. Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
87-alpha: | \(DC(\aleph_{\alpha})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y|<\aleph_{\alpha}\), there is an \(x\in X\) with \(Y\mathrel R x\) then there is a function \(f:\aleph_{\alpha}\to X\) such that (\(\forall\beta < \aleph_{\alpha}\)) \(\{f(\gamma): \gamma < \beta\}\mathrel R f(\beta)\). |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
78: | Urysohn's Lemma: If \(A\) and \(B\) are disjoint closed sets in a normal space \(S\), then there is a continuous \(f:S\rightarrow [0,1]\) which is 1 everywhere in \(A\) and 0 everywhere in \(B\). Urysohn [1925], pp 290-292. |
155: | \(LC\): There are no non-trivial Läuchli continua. (A Läuchli continuum is a strongly connected continuum. Continuum \(\equiv\) compact, connected, Hausdorff space; and strongly connected \(\equiv\) every continuous real valued function is constant.) |
Comment: