We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
61 \(\Rightarrow\) 45-n | clear |
45-n \(\Rightarrow\) 33-n | clear |
33-n \(\Rightarrow\) 47-n | clear |
47-n \(\Rightarrow\) 288-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
45-n: | If \(n\in\omega-\{0,1\}\), \(C(\infty,n)\): Every set of \(n\)-element sets has a choice function. |
33-n: | If \(n\in\omega-\{0,1\}\), \(C(LO,n)\): Every linearly ordered set of \(n\) element sets has a choice function. |
47-n: | If \(n\in\omega-\{0,1\}\), \(C(WO,n)\): Every well ordered collection of \(n\)-element sets has a choice function. |
288-n: | If \(n\in\omega-\{0,1\}\), \(C(\aleph_0,n)\): Every denumerable set of \(n\)-element sets has a choice function. |
Comment: