We have the following indirect implication of form equivalence classes:

303 \(\Rightarrow\) 223
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
303 \(\Rightarrow\) 50 Some propositions equivalent to the Sikorski extension theorem for Boolean algebras, Bell, J.L. 1988, Fund. Math.
50 \(\Rightarrow\) 14 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
14 \(\Rightarrow\) 63 clear
63 \(\Rightarrow\) 70 clear
70 \(\Rightarrow\) 206 clear
206 \(\Rightarrow\) 223 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
303:

If \(B\) is a Boolean algebra, \(S\subseteq B\) and \(S\) is closed under \(\land\), then there is a \(\subseteq\)-maximal proper ideal \(I\) of \(B\) such that \(I\cap S= \{0\}\).

50:

Sikorski's  Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141.

14:

BPI: Every Boolean algebra has a prime ideal.

63:

\(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter.
Jech [1973b], p 172 prob 8.5.

70:

There is a non-trivial ultrafilter on \(\omega\). Jech [1973b], prob 5.24.

206:

The existence of a non-principal ultrafilter: There exists an infinite set \(X\) and a non-principal ultrafilter on \(X\).

223:

There is an infinite set \(X\) and a non-principal measure on \(\cal P(X)\).

Comment:

Back