We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
303 \(\Rightarrow\) 50 |
Some propositions equivalent to the Sikorski extension theorem for Boolean algebras, Bell, J.L. 1988, Fund. Math. |
50 \(\Rightarrow\) 14 |
A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar. |
14 \(\Rightarrow\) 49 |
A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar. |
49 \(\Rightarrow\) 30 | clear |
30 \(\Rightarrow\) 62 | clear |
62 \(\Rightarrow\) 178-n-N | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
303: | If \(B\) is a Boolean algebra, \(S\subseteq B\) and \(S\) is closed under \(\land\), then there is a \(\subseteq\)-maximal proper ideal \(I\) of \(B\) such that \(I\cap S= \{0\}\). |
50: | Sikorski's Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141. |
14: | BPI: Every Boolean algebra has a prime ideal. |
49: | Order Extension Principle: Every partial ordering can be extended to a linear ordering. Tarski [1924], p 78. |
30: | Ordering Principle: Every set can be linearly ordered. |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
178-n-N: | If \(n\in\omega\), \(n\ge 2\) and \(N \subseteq \{ 1, 2, \ldots , n-1 \}\), \(N \neq\emptyset\), \(MC(\infty,n, N)\): If \(X\) is any set of \(n\)-element sets then there is a function \(f\) with domain \(X\) such that for all \(A\in X\), \(f(A)\subseteq A\) and \(|f(A)|\in N\). |
Comment: