We have the following indirect implication of form equivalence classes:

303 \(\Rightarrow\) 140
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
303 \(\Rightarrow\) 50 Some propositions equivalent to the Sikorski extension theorem for Boolean algebras, Bell, J.L. 1988, Fund. Math.
50 \(\Rightarrow\) 14 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
14 \(\Rightarrow\) 49 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
49 \(\Rightarrow\) 30 clear
30 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 88 clear
88 \(\Rightarrow\) 140 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
303:

If \(B\) is a Boolean algebra, \(S\subseteq B\) and \(S\) is closed under \(\land\), then there is a \(\subseteq\)-maximal proper ideal \(I\) of \(B\) such that \(I\cap S= \{0\}\).

50:

Sikorski's  Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141.

14:

BPI: Every Boolean algebra has a prime ideal.

49:

Order Extension Principle: Every partial ordering can be extended to a linear ordering.  Tarski [1924], p 78.

30:

Ordering Principle: Every set can be linearly ordered.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

140:

Let \(\Omega\) be the set of all (undirected) infinite cycles of reals (Graphs whose vertices are real numbers, connected, no loops and each vertex adjacent to  exactly two others). Then there is a function \(f\) on \(\Omega \) such that for all \(s\in\Omega\), \(f(s)\) is a direction along \(s\).

Comment:

Back