We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
50 \(\Rightarrow\) 14 |
A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar. |
14 \(\Rightarrow\) 107 | |
107 \(\Rightarrow\) 96 | Transversal Theory, Mirsky, [1971] |
96 \(\Rightarrow\) 235 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
50: | Sikorski's Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141. |
14: | BPI: Every Boolean algebra has a prime ideal. |
107: | M. Hall's Theorem: Let \(\{S(\alpha): \alpha\in A\}\) be a collection of finite subsets (of a set \(X\)) then if |
96: | Löwig's Theorem:If \(B_{1}\) and \(B_{2}\) are both bases for the vector space \(V\) then \(|B_{1}| = |B_{2}|\). |
235: | If \(V\) is a vector space and \(B_{1}\) and \(B_{2}\) are bases for \(V\) then \(|B_{1}|\) and \(|B_{2}|\) are comparable. |
Comment: