We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
259 \(\Rightarrow\) 51 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
51 \(\Rightarrow\) 25 |
Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc. |
25 \(\Rightarrow\) 34 | clear |
34 \(\Rightarrow\) 104 | clear |
104 \(\Rightarrow\) 182 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
259: | \(Z(TR\&C,W)\): If \((X,R)\) is a transitive and connected relation in which every well ordered subset has an upper bound, then \((X,R)\) has a maximal element. |
51: | Cofinality Principle: Every linear ordering has a cofinal sub well ordering. Sierpi\'nski [1918], p 117. |
25: | \(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\). |
34: | \(\aleph_{1}\) is regular. |
104: | There is a regular uncountable aleph. Jech [1966b], p 165 prob 11.26. |
182: | There is an aleph whose cofinality is greater than \(\aleph_{0}\). |
Comment: