We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
90 \(\Rightarrow\) 51 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
51 \(\Rightarrow\) 337 |
Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
51: | Cofinality Principle: Every linear ordering has a cofinal sub well ordering. Sierpi\'nski [1918], p 117. |
337: | \(C(WO\), uniformly linearly ordered): If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\). |
Comment: