We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
57 \(\Rightarrow\) 64 |
Classes of Dedekind finite cardinals, Truss, J. K. 1974a, Fund. Math. |
64 \(\Rightarrow\) 127 |
Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
57: |
If \(x\) and \(y\) are Dedekind finite sets then either \(|x|\le |y|\) or \(|y|\le |x|\). |
64: | \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) |
127: | An amorphous power of a compact \(T_2\) space, which as a set is well orderable, is well orderable. |
Comment: