We have the following indirect implication of form equivalence classes:

60 \(\Rightarrow\) 285
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
60 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 285 On functions without fixed points, Wi'sniewski, K. 1973, Comment. Math. Prace Mat.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
60:

\(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function.
Moore, G. [1982], p 125.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

285:

Let \(E\) be a set and \(f: E\to E\), then \(f\) has a fixed point if and only if \(E\) is not the union of three mutually disjoint sets \(E_1\), \(E_2\) and \(E_3\) such that \(E_i \cap f(E_i) = \emptyset\) for \(i=1, 2, 3\).

Comment:

Back