We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
60 \(\Rightarrow\) 85 | clear |
85 \(\Rightarrow\) 356 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
60: |
\(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function. |
85: | \(C(\infty,\aleph_{0})\): Every family of denumerable sets has a choice function. Jech [1973b] p 115 prob 7.13. |
356: | \(KW(\infty,\aleph_0)\), The Kinna-Wagner Selection Principle for a family of denumerable sets: For every set \(M\) of denumerable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: