We have the following indirect implication of form equivalence classes:

218 \(\Rightarrow\) 336-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
218 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 11 clear
11 \(\Rightarrow\) 12 clear
12 \(\Rightarrow\) 336-n clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
218:

\((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then  there  is  a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\).

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

11:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\), \(A\) has an infinite subset \(B\) such that for every \(n\in\omega\), \(n>0\), the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco [1998b]

12:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\) and every \(n\in\omega\), there is an infinite subset \(B\) of \(A\) such the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco} [1998b]

336-n:

(For \(n\in\omega\), \(n\ge 2\).)  For every infinite set \(X\), there is an infinite \(Y \subseteq X\) such that the set of all \(n\)-element subsets of \(Y\) has a choice function.

Comment:

Back