We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 8 \(\Rightarrow\) 9 | Was sind und was sollen die Zollen?, Dedekind, [1888] |
| 9 \(\Rightarrow\) 325 | note-46 |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 8: | \(C(\aleph_{0},\infty)\): |
| 9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
| 325: | Ramsey's Theorem II: \(\forall n,m\in\omega\), if A is an infinite set and the family of all \(m\) element subsets of \(A\) is partitioned into \(n\) sets \(S_{j}, 1\le j\le n\), then there is an infinite subset \(B\subseteq A\) such that all \(m\) element subsets of \(B\) belong to the same \(S_{j}\). (Also, see Form 17.) |
Comment: