We have the following indirect implication of form equivalence classes:

61 \(\Rightarrow\) 389
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
61 \(\Rightarrow\) 80 clear
80 \(\Rightarrow\) 389 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

80:

\(C(\aleph_{0},2)\):  Every denumerable set of  pairs has  a  choice function.

389:

\(C(\aleph_0,2,\cal P({\Bbb R}))\): Every denumerable family of two element subsets of \(\cal P({\Bbb R})\) has a choice function.  \ac{Keremedis} \cite{1999b}.

Comment:

Back