We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
61 \(\Rightarrow\) 80 | clear |
80 \(\Rightarrow\) 18 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
80: | \(C(\aleph_{0},2)\): Every denumerable set of pairs has a choice function. |
18: | \(PUT(\aleph_{0},2,\aleph_{0})\): The union of a denumerable family of pairwise disjoint pairs has a denumerable subset. |
Comment: