We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
284 \(\Rightarrow\) 61 | note-36 |
61 \(\Rightarrow\) 80 | clear |
80 \(\Rightarrow\) 389 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
284: | A system of linear equations over a field \(F\) has a solution in \(F\) if and only if every finite sub-system has a solution in \(F\). |
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
80: | \(C(\aleph_{0},2)\): Every denumerable set of pairs has a choice function. |
389: | \(C(\aleph_0,2,\cal P({\Bbb R}))\): Every denumerable family of two element subsets of \(\cal P({\Bbb R})\) has a choice function. \ac{Keremedis} \cite{1999b}. |
Comment: