We have the following indirect implication of form equivalence classes:

15 \(\Rightarrow\) 280
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
15 \(\Rightarrow\) 30 The Axiom of Choice, Jech, 1973b, page 53 problem 4.12
30 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 88 clear
88 \(\Rightarrow\) 142 The Axiom of Choice, Jech, 1973b, page 7 problem 11
142 \(\Rightarrow\) 280 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
15:

\(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)).  

30:

Ordering Principle: Every set can be linearly ordered.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

142:

\(\neg  PB\):  There is a set of reals without the property of Baire.  Jech [1973b], p. 7.

280:

There is a complete separable metric space with a subset which does not have the Baire property.

Comment:

Back