We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
270 \(\Rightarrow\) 62 |
Restricted versions of the compactness theorem, Kolany, A. 1991, Rep. Math. Logic |
62 \(\Rightarrow\) 10 | clear |
10 \(\Rightarrow\) 80 | clear |
80 \(\Rightarrow\) 18 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
270: | \(CT_{\hbox{fin}}\): The compactness theorem for propositional logic restricted to sets of formulas in which each variable occurs only in a finite number of formulas. |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
80: | \(C(\aleph_{0},2)\): Every denumerable set of pairs has a choice function. |
18: | \(PUT(\aleph_{0},2,\aleph_{0})\): The union of a denumerable family of pairwise disjoint pairs has a denumerable subset. |
Comment: