We have the following indirect implication of form equivalence classes:

68 \(\Rightarrow\) 336-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
68 \(\Rightarrow\) 62 Subgroups of a free group and the axiom of choice, Howard, P. 1985, J. Symbolic Logic
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 11 clear
11 \(\Rightarrow\) 12 clear
12 \(\Rightarrow\) 336-n clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
68:

Nielsen-Schreier Theorem: Every subgroup of a free group is free.  Jech [1973b], p 12.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

11:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\), \(A\) has an infinite subset \(B\) such that for every \(n\in\omega\), \(n>0\), the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco [1998b]

12:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\) and every \(n\in\omega\), there is an infinite subset \(B\) of \(A\) such the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco} [1998b]

336-n:

(For \(n\in\omega\), \(n\ge 2\).)  For every infinite set \(X\), there is an infinite \(Y \subseteq X\) such that the set of all \(n\)-element subsets of \(Y\) has a choice function.

Comment:

Back