We have the following indirect implication of form equivalence classes:

323 \(\Rightarrow\) 390
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
323 \(\Rightarrow\) 62 note-70
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 45-n clear
45-n \(\Rightarrow\) 64 Classes of Dedekind finite cardinals, Truss, J. K. 1974a, Fund. Math.
64 \(\Rightarrow\) 390 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
323:

\(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See Form 15.)

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

45-n:

If \(n\in\omega-\{0,1\}\), \(C(\infty,n)\): Every set of \(n\)-element sets has a choice function.

64:

\(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.)

390:

Every infinite set can be partitioned either into two infinite sets or infinitely many sets, each of which has at least two elements. Ash [1983].

Comment:

Back