We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
323 \(\Rightarrow\) 62 | note-70 |
62 \(\Rightarrow\) 61 | clear |
61 \(\Rightarrow\) 46-K | clear |
46-K \(\Rightarrow\) 120-K | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
323: | \(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
46-K: | If \(K\) is a finite subset of \(\omega-\{0,1\}\), \(C(\infty,K)\): For every \(n\in K\), every set of \(n\)-element sets has a choice function. |
120-K: | If \(K\subseteq\omega-\{0,1\}\), \(C(LO,K)\): Every linearly ordered set of non-empty sets each of whose cardinality is in \(K\) has a choice function. |
Comment: