We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
409 \(\Rightarrow\) 62 |
Short proof of a theorem of Rado on graphs, Foster, B. L. 1964, Proc. Amer. Math. Soc. note-152 |
62 \(\Rightarrow\) 61 | clear |
61 \(\Rightarrow\) 88 | clear |
88 \(\Rightarrow\) 268 |
Subalgebra lattices of unary algebras and an axiom of choice, Lampe, W. A. 1974, Colloq. Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
409: | Suppose \((G,\Gamma)\) is a locally finite graph (i.e. \(G\) is a non-empty set and \(\Gamma\) is a function from \(G\) to \(\cal P(G)\) such that for each \(x\in G\), \(\Gamma(x)\) and \(\Gamma^{-1}\{x\}\) are finite), \(K\) is a finite set of integers, and \(T\) is a function mapping subsets of \(K\) into subsets of \(K\). If for each finite subgraph \((A,\Gamma_A)\) there is a function \(\psi\) such that for each \(x\in A\), \(\psi(x)\in T(\psi[\Gamma_A(x)])\), then there is a function \(\phi\) such that for all \(x\in G\), \(\phi(x)\in T(\phi[\Gamma(x)])\). |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
88: | \(C(\infty ,2)\): Every family of pairs has a choice function. |
268: | If \({\cal L}\) is a lattice isomorphic to the lattice of subalgebras of some unary universal algebra (a unary universal algebra is one with only unary or nullary operations) and \(\alpha \) is an automorphism of \({\cal L}\) of order 2 (that is, \(\alpha ^{2}\) is the identity) then there is a unary algebra \(\frak A\) and an isomorphism \(\rho \) from \({\cal L}\) onto the lattice of subalgebras of \(\frak A^{2}\) with \[\rho(\alpha(x))=(\rho(x))^{-1} (= \{(s,t) : (t,s)\in\rho(x)\})\] for all \(x\in {\cal L}\). |
Comment: