We have the following indirect implication of form equivalence classes:

323 \(\Rightarrow\) 93
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
323 \(\Rightarrow\) 62 note-70
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 88 clear
88 \(\Rightarrow\) 93 The Axiom of Choice, Jech, 1973b, page 7 problem 10

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
323:

\(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See Form 15.)

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

93:

There is a non-measurable subset of \({\Bbb R}\).

Comment:

Back