We have the following indirect implication of form equivalence classes:

344 \(\Rightarrow\) 178-n-N
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
344 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 178-n-N clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
344:

If \((E_i)_{i\in I}\) is a family of non-empty sets, then there is a family \((U_i)_{i\in I}\) such that \(\forall i\in I\), \(U_i\) is an ultrafilter on \(E_i\).

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

178-n-N:

If  \(n\in\omega\), \(n\ge 2\) and \(N \subseteq \{ 1, 2, \ldots , n-1 \}\), \(N \neq\emptyset\), \(MC(\infty,n, N)\):  If \(X\) is any set of \(n\)-element sets then  there is  a function \(f\) with domain \(X\) such that for all \(A\in X\), \(f(A)\subseteq A\) and \(|f(A)|\in N\).

Comment:

Back