We have the following indirect implication of form equivalence classes:

107 \(\Rightarrow\) 327
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
107 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 121 clear
121 \(\Rightarrow\) 122 clear
122 \(\Rightarrow\) 327 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
107:  

M. Hall's Theorem: Let \(\{S(\alpha): \alpha\in A\}\) be a collection of finite subsets (of a set \(X\)) then if

(*) for each finite \(F \subseteq  A\) there is an injective choice function on \(F\)
then there is an injective choice function on \(A\). (That is, a 1-1 function \(f\) such that \((\forall\alpha\in A)(f(\alpha)\in S(\alpha))\).) (According to a theorem of P. Hall (\(*\)) is equivalent to \(\left |\bigcup_{\alpha\in F} S(\alpha)\right|\ge |F|\). P. Hall's theorem does not require the axiom of choice.)

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

121:

\(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function.

122:

\(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function.

327:

\(KW(WO,<\aleph_0)\),  The Kinna-Wagner Selection Principle for a well ordered family of finite sets: For every well ordered set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\)  then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.)

Comment:

Back