We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
387 \(\Rightarrow\) 64 |
"Dense orderings, partitions, and weak forms of choice", Gonzalez, C. 1995a, Fund. Math. |
64 \(\Rightarrow\) 127 |
Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
387: | DPO: Every infinite set has a non-trivial, dense partial order. (A partial ordering \(<\) on a set \(X\) is dense if \((\forall x, y\in X)(x \lt y \to (\exists z \in X)(x \lt z \lt y))\) and is non-trivial if \((\exists x,y\in X)(x \lt y)\)). |
64: | \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) |
127: | An amorphous power of a compact \(T_2\) space, which as a set is well orderable, is well orderable. |
Comment: