We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
43 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 9 | Was sind und was sollen die Zollen?, Dedekind, [1888] |
9 \(\Rightarrow\) 83 | The Axiom of Choice, Jech, 1973b, page 52 problem 9 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
8: | \(C(\aleph_{0},\infty)\): |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
83: | \(E(I,II)\) Howard/Yorke [1989]: \(T\)-finite is equivalent to finite. |
Comment: