We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
66 \(\Rightarrow\) 67 |
Existence of a basis implies the axiom of choice, Blass, A. 1984a, Contemporary Mathematics |
67 \(\Rightarrow\) 112 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
66: | Every vector space over a field has a basis. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
112: | \(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
Comment: